
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

42

USING CLOUDS FOR FPGA DEVELOPMENT –

A COMMERCIAL PERSPECTIVE

Laurențiu A. Dumitru 1*

Sergiu Eftimie 2

Ciprian Răcuciu 3

ABSTRACT

Field Programmable Gate Arrays (FPGA) are electronic devices that can be reconfigured

at runtime. Due to the fact that they implement a small number of dedicated functions,

FPGAs are used for hardware acceleration, alongside with general purpose processors.

Several vendors provide different Integrated Development Environments, but all of them

support the standard VHDL and Verilog hardware description languages. After the

development phase, implementing an FPGA design can be a time-consuming and cpu-

intensive task. The current paper examines existing technical solutions that provide build

parallelism at high speeds, as opposed to workstation-local building, and tries to estimate

at what point migrating towards a third party justifies the costs.

KEYWORDS: FPGA development, FPGA synthesis in clouds

1. INTRODUCTION

Field Programmable Gate Arrays are now used in more and more environments, due to

their versatility and performance. From real-time tasks such as feedback and control in

automotive and aviation applications to more general-purpose such as enabling IOT

connectivity, FPGAs bridge the gap between flexibility and hardware-implemented

algorithms. Traditional software, executed on a normal microprocessor, runs sequentially,

while algorithms executed on FPGA hardware run in parallel. Furthermore, FPGAs

interact directly with the external environment through input/output pins of various

physical characteristic. This capability makes them perfect for multiple sensor acquisition

at very high speeds.

In normal computing systems, FPGAs can be found in many places such as North and

South Bridges, network cards or dedicated accelerators. Since FPGA chips can be

reprogrammed as the need occurs, many vendors have chosen to use FPGA over

traditional ASICs (Application Specific Integrated Circuit) due to easier firmware

1* corresponding author, PhD. Cand., Military Technical Academy, 39-49 George Coșbuc Bvd., Bucharest,

Romania, dlaur@nipne.ro
2 PhD. Cand., Military Technical Academy, 39-49 George Coșbuc Bvd., Bucharest, Romania,

sergiu.eftimie@gmail.com
3 Univ. Prof. PhD., Military Technical Academy, 39-49 George Coșbuc Bvd., Bucharest, Romania,

ciprian.racuciu@gmail.com

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

43

upgrade and lower time-to-market. Evolution of fabrication techniques has permitted

higher operating frequencies that were not available in the past. The 16nm fabrication

process and technologies such as 3D IC offer higher interconnection speeds, larger

reprogrammable areas and lower power consumption.

System-On-A-Chip architectures usually combine a normal microprocessor, such as ARM

Cortex, with reprogrammable logic, such as an FPGA chip. The hardware microprocessor

runs at a higher frequency than the FPGA, thus is capable of running modern operating

systems without sacrificing performance, while the FPGA has the flexibility to implement

various interfaces for outside communication. Such an example is the Xilinx Zynq product

family. SoC designs are found in many consumer electronics that are IOT-capable.

Modern FPGA families have multiple capabilities such as radiation tolerance, integrity

checking, error correction and partial reconfiguration. Such abilities make them suitable

for mission-critical environments the error toleration rate is extremely low. In the past,

FPGAs did not provide any technical solutions for upgrading a device without rebooting it

but now, partial reconfiguration can be used for in-field software upgrades without the

need of restarting the device. Such a feature can prove to be very useful in set-ups where

high availability is needed. Multi-gigabit transceivers that can connect to many mediums

have boosted the use of FPGAs in consumer-grade devices. The development for FPGA is

usually done in a Hardware Definition Language (HDL), such as VHDL or Verilog, with

the help of an Integrated Development Environment provided by the chip's vendor.

Most of these IDE's provide Software Development Kits that ease the deployment of

software stacks on top of hardware or software-implemented processors. The

development process of an embedded system can be split in hardware development and

software development. Hardware development refers to the architecture implemented in

the FPGA chip, not including the electronic part, but including any HDL-related code,

while software development refers to applications written in high-level languages that are

to be executed on the microprocessors available on the hardware design.

The software development of an embedded system usually refers to the programming the

soft-core or physical microprocessor units installed. It can be done in ultra-low level

languages, such as assembly, or with more developer-friendly alternatives such as C/C++.

There are not so many IDEs that support just-in-time languages due to the necessity of an

underlying translation unit, which, on embedded systems, can occupy resources and

consume more power without giving back any benefits. For solutions that support

multiple microprocessor architectures a programming language that can easily be ported

to many targets is wanted. During the development phase, virtual environments that

simulate the target architecture can be used to validate a specific code, before trying it on

the development boards.

The development and testing of the hardware architecture is a process that can be time-

consuming. The time interval of generating the final product of the design, the bit stream

that is to be programmed in hardware, varies with the size of the FPGA, the complexity of

the HDL code and the speed of the system on which the process is taking place.

Functional validation is done by simulating the design, but, in many cases, actual

validation can take place only when the hardware is programmed, probes are placed in

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

44

specific parts and physical test benches evaluate the overall behaviour. Such an example

is the development of a system that has PCIe connectivity. It can be fully tested only

when the card is placed in an actual system, the drivers are active and data flow can occur.

If the desired behaviour is not achieved, an error occurs or it just does not work, the

system engineer must start the whole process all over again. Repeating this process can be

painful given the fact that it can take from a few tens of minutes to tens of hours. If a

company is only occasionally building such systems, it can be assumed that at best only a

few workstations are available for the development. It is obvious how these high

implementation times can affect a specific time frame inside a project's workflow.

While there are methods of speeding up the implementation, most of them come at a cost.

Companies that have FPGA as a primary market have their own dedicated computing

farms for such situation. Other companies, that do from time to time FPGA development,

cannot justify the implementation costs of high performance systems. Alternatives exist

for these companies. This paper analyses how a FPGA implementation processes can

benefit from computing clouds, what are the technical requirements and what costs can be

expected. The proposed technical approach is not the only one that could be implemented.

2. RELATED WORK

Since FPGA development is still considered inaccessible to the average consumer-

oriented company due to high man-power costs, high technical costs and increased

technical complexity there are not many viable remote building/compiling solutions.

However, large companies such as Intel and Microsoft have already massively deployed

FPGAs in their cloud products. When FPGA will be endorsing more and more

technologies, more alternatives will be added to the few build options available to the

current design flow.

Figure 1. NI Compile Cloud Architecture

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

45

LabVIEW offers the “NI LabVIEW FPGA Compile Cloud Service” for its clients. It is

described on their whitepaper as providing shorter compile times enabled by high-

performance Linux-based servers in the cloud, improved productivity by performing

multiple compiles at a time, in parallel, and the convenience of being able to power-down

your PC at any time during a compile. In [Fig. 1] we can observe the architecture, based

on a client-service model, as described by the vendor.

Such a solution is, unfortunately, only available for customers that use their technologies.

However, based on the architectural model, one can envision a general approach of the

same workflow.

Trying to address the same gap, “Plunify”, a Singapore-based company founded in 2009,

develops a cloud platform that enables semiconductor chip designers to shorten product

time to market and reduce development costs. Plunify offers its products as add-ons to

existing IDEs provided by various FPGA vendors. InTime, the product that addresses

optimization products and timing closures by means of machine learning and raw

computing power, supports Xilinx's ISE and Vivado and Altera's Quartus. It has various

run targets: local systems, private clouds and public clouds. Since its launch, it has

developed several interfaces that allow a developer to run multiple scenarios in parallel,

manage computing resource, do scheduling and various other tasks. Regression testing,

design optimization and resource management are also available.

During the process of developing an FPGA design, a series of compilation cycles are

needed. Plunify also offers tools for regression testing and benchmarking that are highly

important in these cases and help to analyse if a feature has been affected or broken due to

design changes. Automation also plays an important role in the whole process because it

can identify flaws with minimal effort in case of last minute changes, for example.

Figure 2. PLUNIFY EDAxtend Cloud Platform

EDAxtend is Plunify's cloud platform that can run in public and private clouds and uses

the existing design tools so that engineering teams can, without having to learn new

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

46

methodologies, harvest the power or large computing farms. API and script-based access

is available so that both interactive and automated build scenarios are supported.

Communication to and from the cloud platform is secured with VPNs, SSL/TLS and other

techniques.

For large development teams and multiple projects, PLUNIFY's platform and tools are a

major improvement from having to manage such in-house resources. For others, the TCO

might still not justify the use of such a platform.

Standard cloud services, where one can run a Virtual Private Server, can be used to

overcome the limitations of a small number of workstations. The following section

proposes such an approach.

Amazon has also launched its FPGA service in 2016 called F1 [Fig. 3] that uses field-

programmable gate arrays. The new instances are planned to become generally available

during 2017. The company motivates their service offering in the increasing affordability

of the FPGAs and the fact that they have become easier to program, opening the way to

their use into a wide area of services. The increase availability in the cloud is believed to

motivate the developers to start experimenting with them.

4K video processing and imaging, as well as machine learning are considered suitable

candidates for FPGA development.

NGCodec is a company that worked with Amazon in order to test the new F1 instances.

NGCodec implemented its product called RealityCodec for VR/AR processing using F1

instances within a month of development. NGCodec estimates that such an

implementation could allow the run of a complex video processing needed to run a virtual

reality device using a head-mounted display in the cloud. FPGAs have an important

advantage over GPUs because the encoding involves processing that GPUs normally

transfer it to the CPU. FPGAs are also more power efficient in this of scenario.

Figure 3. FPGA acceleration using an F1 instance

https://aws.amazon.com/ec2/instance-types/f1/
http://ngcodec.com/
http://ngcodec.com/
http://ngcodec.com/

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

47

Amazon has a partnership with Xilinx, one of the major FPGA manufacturers. This is a

list of specifications for F1 instances:

 Xilinx UltraScale+ VU9P fabricated using a 16 nm process.

 64 GiB of ECC-protected memory on a 288-bit wide bus (four DDR4 channels).

 Dedicated PCIe x16 interface to the CPU.

 2.5 million logic elements.

 6,800 Digital Signal Processing (DSP) engines.

 Virtual JTAG interface for debugging.

Despite these advantages, FPGA programming remains a hard discipline. Amazon has

announced that it won’t release tools for FPGA development (Xilinx will cover this

aspect) but instead it will focus on the cloud side where it will release development kits

and a machine image that the developers can use to get started with the F1 instances.

3. THE PROPOSED APPROACH

Infrastructure as a Service (IaaS) is a form of cloud computing that provides virtualized

computing resources over the Internet. IaaS is one of three main categories of cloud

computing services, alongside Software as a Service (SaaS) and Platform as a Service

(PaaS). Amazon Web Services, Microsoft, Google or Rackspace can be found amongst

the main companies that provide Infrastructure as a Service business plans. IaaS is

suitable for a number of situations where demand on the infrastructure is volatile or where

new companies do not possess the capital to invest in hardware. Both scaling and

temporary needs for hardware are covered by IaaS. Cloud providers supply the resources

in an on-demand manner from their pools of resources located in data centres. In our

proposed approach the cloud provider should also invest in a pool of FPGA chips linked

to an existing computing infrastructure [Fig. 4] in order to be able to provide a testing

infrastructure to their clients. Among the advantages of using a IaaS are the rapid

innovation due to the readiness of the infrastructure when needed and the focus on the

core business, in our case, the FPGA development. The payment model eliminates the

expenses involved in deploying on-site software and hardware. Despite this, users should

monitor their IaaS console in order to avoid being charged for unauthorized malicious

access.

Due to the fact that cloud providers own the IaaS infrastructure, the monitoring and the

management of the systems may become difficult for users. Also, if an IaaS provider

experiences downtime, users' workloads may be affected.

 Cost-effectiveness may arise in specific scenarios. For example, once a certain software

is tested, it can be moved from the IaaS environment to a proprietary infrastructure in

order to free the resources for other development projects. Cloud computing uses

automation in order to meet the unpredictable requirements of the users. Cloud software

automates the provisioning and the scaling of the computing resources, storage and

network. In our approach, we envision the development of an interface that would

simplify the entire provisioning system through process templates used in the workflow,

in order to simplify the provisioning activities.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

48

Figure 4. Hybrid IaaS-FPGA

In the following section, the “Consumer” is any company that will, at some point in a

certain project, need to implement FPGA functionality. The “Provider” is a company that

exposes cloud-based FPGA build solutions, with a different approach that those presented

in chapter 2, “Related work”.

For exemplification purposes, the Consumer develops an FPGA-based PCIe

communication card that implements various encryption algorithms for secured point-to-

point communication. Apart from the technical design, the FPGA must implement the

following components: a soft-core processor, Ethernet over Fibre Optics (SFP), PCIe

communication core, Direct Memory Access, Reconfigurable encryption modules, Timers

and other auxiliary components. Implementation times, as evaluated on a standard

workstation with 8GB RAM and an Intel Core i7 @ 2.6 GHz, 3720, 4 cores and 8

Threads:

Table 1. Time comparison

Step Synthesis Place and route
Bit stream

generation

Minimum time 20 min 30 min 2 min

Maximum time ~230 min ~300 min ~3 min

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

49

The times were recorded using various configurations, versions of the IP cores and the

presence/absence of custom IP cores that were implemented in the project. Project design

and implementation was done on a Xilinx Kintex 7 FPGA chip and Vivado IDE as

development environment. Xilinx Kintex 7 has the best price-performance ratio on the

market with 478k logic cells, VCXO component, AXI IP and AMS integration. The

FPGA chip has also 32 × 12.5G GTs, 2,845 GMACs, 34Mb BRAM and DDR3-1866. It

can be purchased at half the price of similar 40nm devices and utilises half the power used

by the previous generation.

Figure 5. Compile time comparison

Such a FPGA design can have a lot of trial-and-error steps due to the fact that there are

many components, apart from the actual FPGA architecture, that need to be

interconnected – kernel module, electronics, user space applications. If, on such a

small/mid-sized system, every small modification on the FPGA can last up to 9 hours of

implementation, on larger chips, such as Xilinx's UltraScale Kintex and Virtex, the

required completion time can be a lot larger than 9 hours. When doing compatibility and

regression testing, multiple configurations of the same architecture are a requirement. All

tests were done on Linux. Different kernel versions did not impact the overall

implementation time. According to [2], Linux workstation perform better than their

Windows counterparts. The reduction time is exemplified in Fig.5.

At this point, the management team is faced with multiple options: accepting the large

implementation times, if they can meet the propose time-to-market criteria, invest in

hardware in order to decrease the overall testing and validation time or use resources from

a third party. If there are a small number of projects which will benefit from hardware

investments, chances are that such an approach would be a poorer option over the third

one – renting from a dedicated provider. An evaluation of a common investment for a 10x

speedup, based on the above tests:

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

50

Table 2. License cost

Component Estimated cost

10 × Workstations 10 × 1000 USD = 10k USD

10 × IDE Licenses 10 × 1800 USD = 18k USD

Administration and human resource costs

(6-month project span)
6 × 800 USD = 4.8k USD

All costs were estimated at official “store” price list available online for an average

configuration. No particular vendor or technology was targeted. It is clear that for an

average 6-month FPGA step, the TCO can be very high. If the resource demand is higher,

some companies may take into account private clouds, but with more costs [6]. If a

company has a strict timeline and a tight-budget it is obvious that FPGA development is

not an option.

A “Provider” would be any company that is willing to invest in hardware resources and

software licences in order to provide a pay-per-use service. The service model is

implemented in various Software-as-a-service and Infrastructure-as-a-Service setup [4].

The initial investment is larger than in the case of a single company, but the Provider

would pursue a larger time frame for ROI, as opposed to the TCO of a single company. It

is the provider's goal to approach companies that would like to develop FPGA

architectures in-house for their project but do not have a constant flow of such projects.

From a technical point of view, the Provider would use a cloud solution such as

CloudStack or OpenStack, fully automated, with resource management and dynamic

control as in [8]. For each client that starts a project, a number of Virtual Private Servers

would be started, with reserved resources according to the payment plan. If a 60 month

TCO is planned, an expected 50 clients / year and a maximum number of 10 simultaneous

clients, the investment plan for processing power would be:

 400 cpu cores (4 cores / client × 10 clients × 10x speedup (parallel), as above)

This can be summed up as ~18 servers (dual processor 12 core = 6 clients, 64GB RAM)

that price at around 2300USD. Monthly datacentre costs and administration can be around

1500USD, with a total of 90k USD for 60 months. The estimated TCO for 60 months, not

accounting for unexpected situations, would be:

 18 × 2300 + 1500 × 60 = 131k USD

The average market price per hour for 4 vCPUs with 16GB RAM is variable [5], but in

the current year is, is around $0.23. For a project with ~500 runs of 16 hours/run of

compile times, this would be around 1800$. It is clear that this pay per use model is much

more efficient for any small company than having to invest in its own infrastructure. As

for the Provider's TCO, if the targeted 50 clients per year are achieved, it can change from

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

51

ROI to Profit as early as the second or third year of the project. However, there are cases

in which one may not want to expose private code to a third party, but, in such a situation

the overall cost of the project should account for this situation.

There are other side-costs such as custom application development which must be

accounted for. Nevertheless, these are one-time only and do not have such a high price

than the infrastructure and running costs.

From a client's point of view, the whole process can be summarized as in [Fig. 6]:

Figure 6. Process overview

The client manages its project through a web application. From here he can control

assigned resources and keep costs under observation. After a project is defined, he will

submit it for execution (2). The cloud resource broker would have already reserved the

required servers (3) and starts up the execution. There are two different stages in the

actual flow: an interactive one (4) and a batch/compile one (6). The interactive step

forwards a virtual desktop (5) to the client in which he can do FPGA development in a

desired, IDE, as chosen from the project's settings. Such interactive approaches of

interface forwarding are already in use – example [7]. At this point, it is clear that the

client does not have any software license cost. After he finishes the design, he will launch

the project for synthesis, place and route and bit stream generation inside the cloud. This

step is done in background (6). After the completion of the process, successful or not, the

client will be notified. He then will log back into its account, access the allocated virtual

environment and continue as required. All communication between the client and the

provider are secured. The generated bit stream can be seamlessly integrated into the

client's workspace by means of a VPN or other cloud transport method, such as the one

proposed in [3]. Several authentication schemes can be implemented, based on the client’s

needs.

From an economic point of view, the proposed workflow would require custom software

components that need to be developed exclusively for this kind of project. The

communication part (VPN, dedicated tunnels, a.s.o.) can be achieved by open source

software, such as OpenVPN, or by using dedicated network hardware - such as Cisco’s

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

52

ASA platform. The virtual machine underlying infrastructure, with the necessary tools to

managed hardware and software resources can also be implemented by the use of open

source projects as CloudStack or OpenStack. The web portal, however, would have to be

custom build for such a setup. A basic starting point for the development costs could be

summarized as:

Table 3. Development costs

Project step /

team
Necessary team

Minimum

time

Requirement

analysis
Project architect, Lead programmers, Team leaders 3 months

Frontend

development
Graphics designer, User experience designer, 2

Front-end developers, Lead programmer
4 month

Backend

development
Team leader, 3 to 5 software engineers, Lead

programmer
5 months

Database design
Database design architect

Team leader, Lead programmers
2 months

Platform

integration

Linux system administrator,

Lead programmer
2 months

Validation and

testing
3 to 5 Quality assurance operators 4 months

Reporting Lead programmer, reporting team (2 to 4) 3 months

4. RUNNING TESTS AT THE REMOTE SITE

In case of parallel building of multiple hardware modules, testing and validating them at

the provider’s site could prove to be more efficient than retrieving bit-streams from each

generated module and testing them one at a time. This could be the case when the client

has only a few development FPGA boards but has many module versions. In such

situations, the provider might offer an automated testing and validation service [Fig.7]

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

53

Figure 7. Testing infrastructure for FPGA cloud

If the provider chooses to implement hardware validation at a customer’s request, it is

obvious that its infrastructure must be equipped with multiple FPGA chip types.

Furthermore, additional configuration for bridging PCIe cards to virtual machines in

which the customer’s code is being developed. As proposed before, the most cost-

effective deployment would be that which is based on a cloud computing platform and

every client receives a number of virtual machines. These virtual machines can be of two

types: development and validation. The development ones are used to build the project

whereas the validation ones must be connected in some way with the FPGA chips that are

targeted for testing. A standard method of connecting a hardware devices directly to a

virtual machine is by using a Input/Output MMU virtualization (Intel’s VT-d and AMD’s

Vi), sometimes referred as pass-through. By using an IO memory management unit

virtual guests can directly access hardware resources that are present on the hypervisor.

The motherboard and the BIOS firmware must also support this feature, apart from the

CPU. There is a difference between PCI and PCIe devices in the sense that all PCI

resources at once can be passed through while PCIe devices can be configured

individually. This situation arises from the protocol’s designs. There are, however, certain

restrictions amongst different hypervisors with regard to this technology. The following

table summarizes compatibility:

Table 4. Hypervisor-PCIe support

Hypervisor Supported

Linux KVM Yes

VirtualBox Only on Linux

Hyper-V 2005,2008,2012 No

VMware Version/Product dependent

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

54

Given this restriction, the provider which would operate the infrastructure will have to

pay attention to such features. Since KVM is the most used hypervisor on Linux, one

choice would be the use of OpenStack, which can also integrate with VMware ESXi

hosts. When using an x86-based processor, the hypervisor makes use of the native CPU

instruction to achieve maximum performance. Intel VT's features enable faithful

abstraction of the full prowess of Intel CPU to a virtual machine. All software in the VM

can run without any performance or compatibility hit, as if it was running natively on a

dedicated CPU. Live migration from one Intel CPU generation to another, as well as

nested virtualization, is possible [9].

On OpenStack, the compute service is responsible for interacting with the underlying

hypervisor on a particular host. It controls the hypervisor through an API server. Linux

KVM is the default hypervisor for Compute. The PCI pass-through feature in OpenStack

allows full access and direct control of a physical PCI device in guests. This mechanism is

generic for any kind of PCI device. Thus, an FPGA card which is installed on a PCI/PCIe

bus would be visible to the virtualized guest as if it was directly connected. Before the

existence of this technology, any device exposed to the guest machine would have been

emulated. The data exchange between the emulated device and the physical one would

have been mediated by the hypervisor, thus leading to lower performance and often the

lack of full capabilities of the exposed device inside the virtual machine. One of the

problems introduced with device pass-through is when live migration is required. Live

migration is the suspension and subsequent migration of a VM to a new physical host, at

which point the VM is restarted. This lack could be resolved by the use of PCI hot

plugging, a technology which permits the insertion and removal of PCI devices at

runtime. Even if guest and hypervisor support is present, the PCI card must also be

capable of supporting such a feature. In the case of many FPGA-based PCI devices, this is

not to be expected since the actual physical removal and insertion when a system is

powered in is unlikely to happen.

Some PCI devices provide Single Root I/O Virtualization and Sharing (SR-IOV)

capabilities. When SR-IOV is used, a physical device is virtualized and appears as

multiple PCI devices. Virtual PCI devices are assigned to the same or different guests. In

the case of PCI pass-through, the full physical device is assigned to only one guest and

cannot be shared [9]. If the device under contains at least one PCIe core which provides

virtual functions, the underlying test infrastructure must be able to assign to multiple

virtual test machines a corresponding virtual function, in order to fully test the FPGA

configuration.

If using the pass-through method on a hypervisor which runs multiple test systems, then the

system must be configured in such a way that it will never forward the same FPGA card to

multiple virtual machines. This may lead to system instability and potential data-loss.

Another solution for a testing farm could be based on a private cluster architecture. This is

fundamentally different from a cloud approach due to the fact that is non-interactive. A

typical workflow is presented in Fig. 8:

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

55

Figure 8. Private cluster architecture

Users submit jobs through a dedicated cluster interface which resides on the Computing

Node. After the cluster manager receives the jobs, it evaluates their requirement, and

queues them up for submission. When a node is free, the cluster manager submits a job to

that node. When the job starts executing on the assigned node, it will first preconfigure

the environment and fetch, if necessary, any input data. After the execution is done, the

result is usually stored in a common location or on a Storage Element. At this point, the

user that submitted the job can view its result. This setup, however, implied additional

complexity which might not be visible in the beginning. The main challenge is to have a

framework integrated with the cluster’s batch system that can manage the FPGA card’s

resources, communicate with the host, exchange data with the software processes that

interact with the FPGA and provide an easy to use Application Programming Interface

(API) for high-level software programmers. At the same time, any hardware programmer

must be able to design a specific acceleration module without the need of interacting with

other components such as AXI buses or DMA cores. In order to be generic, the

architecture must be vendor-independent and must be able to accommodate any

acceleration module that implements the required interfaces and signals, without any

particular hardware requirements. Since a large computing cluster is usually

heterogeneous in terms of host system CPU architecture, data buses, operating systems

and referenced libraries/functions by user jobs, the framework must be able to allow

runtime environment rebuilding and it must automatically manage the underlying changes

before a job is launched.

A cluster farm that is used exclusively for testing would be more cost efficient than a

cloud infrastructure. In the testing scenario, the host on which a FPGA configuration is

validated must have at least one FPGA connected. The difference is that of computing

power and hardware resources required. While the cloud architecture would need more

memory and CPU in order to support virtual machines, a worker node inside the testing

cluster would need moderate resources since its only job is to test and communicate with

the FPGA and not to run virtual machines.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

56

There are also software considerations that need to be taken into account when deploying

a cluster-based FPGA testing farm. Neither the cloud approach nor the cluster one provide

out-of-the-box solutions for the scenarios discussed in the present paper. In both cases

FPGAs need to be programmed with the firmware under test. Usually a complete device

program involves a system reboot, especially true for PCIe setups, since the

motherboard’s PCIe root may need to acknowledge and configure the newly instantiated

cores.

5. CONCLUSIONS

FPGA-based solutions are becoming more and more visible as they are being

incorporated into various electronic devices, in most cases as an extension to System on a

Chip architectures. Companies that don't have FPGA development as their primary

market, or small and start-up companies without a lot of investment funds can benefit

from cloud services in order to decrease their FPGA development time and

implementation costs. The alternative would be investing into in-house resources and

managing a private grid or computing cluster. This approach can have a big financial

impact on the whole project. Apart from the technical knowledge, the resources can be

provided by an external party, such as the hypothetical company presented in the previous

section. Thus, a company can exactly evaluate the monthly costs of such a service, for a

limited period of time, which can lead to an overall lower development cost.

Current design flow can prove to be time consuming and the required resources might not

fit into a project's financial flow, if the FPGA component performs an auxiliary, but

mandatory, function, with regards to the overall project.

A cloud based approach, with interactive application forwarding and a solid back-end for

batch building, can be a viable alternative for such situations. Cloud has changed the

industry both in terms of financial returns and in the visible support that it offers to small

businesses. By reducing the total cost of ownership, small companies can now access the

power and versatility of FPGA chips to develop new and innovative solutions. We can

envision a near future where all these technologies can help concepts such as smart cities

to become reality. The smart city concept promotes the use of Information Technology to

enhance the performance and quality of the services offered to citizens. FPGA

technologies can enable applications such as urban traffic management where real-time

response is crucial. Interconnection between different systems can be done in a secure

manner by using dedicated FPGA’s for secure communication. In addition, companies

such as Xilinx have been releasing tools that simplify the use of more common languages

such as C and C++ to program FPGAs. This is an important factor in popularizing the

FPGA development among start-ups.

A service offer represents a quantified set of services and a range of applications that end

users can use through the provider. Service offerings should include resource guarantees,

metering, resource management and billing cycles. Service management functionality

should be developed in a such way that the defined services can be quickly and easily

implemented and managed by the end user. For a cloud service to be truly on demand and

at the same time to able to meet service level agreements, it must be able to manage at any

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

57

time an increase in workload. Management solutions must possess the ability to create

policies around workload and data management to ensure the efficiency and performance

delivered by the system running in the cloud.

The paper has outlined existing solutions, with their advantages and disadvantages, and

has proposed a new workflow that uses current cloud technology. Such a public service

would be endorsed by a dedicated company which has focus on providing cloud FPGA

compile services. The backend would be a cloud stack such as OpenStack or CloudStack,

with a web frontend through which a client can manage his projects and resources. All

communication would be encrypted and data would be stored on the provider’s disks only

during the project. Confidentiality and data integrity would be assured through normal

means such as Service Level Agreements and Non-Disclosure agreements.

6. REFERENCES

[1] LabVIEW FPGA Compile Cloud Service, http://www.ni.com/white-

paper/52328/en/

[2] LabVIEW FPGA Compile Worker Compile Time Benchmarks,

http://www.ni.com/white-paper/14040/en/

[3] Laurențiu A. Dumitru, Sergiu Eftimie, Dan Fostea, An FPGA-Based cloud storage

gateway, 2nd International Conference SEA-CONF, Academia Navală Mircea Cel

Bătrân, Constanța, 2016

[4] Gorelik, Eugene. Cloud computing models. Diss. Massachusetts Institute of

Technology, 2013.

[5] Yi, Sangho, Artur Andrzejak, and Derrick Kondo. "Monetary cost-aware

checkpointing and migration on Amazon cloud spot instances." IEEE Transactions

on Services Computing 5.4 (2012): 512-524.

[6] Greenberg, Albert, et al. "The cost of a cloud: research problems in data center

networks." ACM SIGCOMM computer communication review 39.1 (2008): 68-73.

[7] Banik, Thomas, et al. "System for virtual process interfacing via a remote desktop

protocol (rdp)." U.S. Patent Application No. 10/527,913.

[8] Dumitru Laurențiu A., Sergiu Eftimie, et al. "A novel architecture for

authenticating scalable resources in hybrid cloud." Communications (COMM),

2016 International Conference on. IEEE, 2016.

[9] OpenStack documentation https://docs.openstack.org

[10] Intel Virtualization Technology, http://www.intel.com/content/www/us/en/

virtualization/virtualization-technology/intel-virtualization-technology.html

http://www.ni.com/white-paper/52328/en/
http://www.ni.com/white-paper/52328/en/
http://www.ni.com/white-paper/14040/en/
http://www.ni.com/white-paper/14040/en/
https://docs.openstack.org/

